
PyGauss Documentation
Release 0.1.1

Maxime Vono

Feb 05, 2022

Contents

1 Installation instructions 3

2 Documentation contents 5
2.1 Direct sampling . 5

2.1.1 Description . 5
2.1.2 API . 5

2.2 MCMC sampling . 10
2.2.1 Description . 10
2.2.2 API . 10

Python Module Index 15

Index 17

i

ii

PyGauss Documentation, Release 0.1.1

As a contraction of Python and Gaussian, PyGauss is the companion package associated to the paper entitled High-
dimensional Gaussian sampling: A review and a unifying approach based on a stochastic proximal point algorithm
[1] which is publicy available on arXiv.

This package, written in PYTHON, aims at both reproducing the illustrations and experiments of [1] and providing
the readers implementations of the Gaussian sampling approaches reviewed in [1].

Precision matrix for Coepra dataset Precision matrix for MNIST dataset

Eigenvalues of estimated covariance matrices ESS ratio for two samplers

Contents 1

https://arxiv.org/abs/2010.01510

PyGauss Documentation, Release 0.1.1

2 Contents

CHAPTER 1

Installation instructions

See the installation instructions on GitHub.

3

https://github.com/mvono/PyGauss#installation

PyGauss Documentation, Release 0.1.1

4 Chapter 1. Installation instructions

CHAPTER 2

Documentation contents

2.1 Direct sampling

2.1.1 Description

This Python module implements existing approaches, directly derived from numerical linear algebra, to sample from
high-dimensional Gaussian probability distributions. The latter can be divided into three groups, namely:

• factorization approaches (e.g., Cholesky or square-root samplers),

• square-root approximation approaches (e.g., Chebyshev and Lanczos samplers),

• conjugate-gradient samplers.

For more details, we refer the interested reader to Section 3 of the companion paper.

2.1.2 API

Implementation of direct approaches to sample from multivariate Gaussian distributions.

See also:

Documentation on ReadTheDocs

pygauss.direct_sampling.sampler_band(mu, A, b, mode=’precision’, seed=None, size=1)
Algorithm dedicated to sample from a multivariate real-valued Gaussian distribution 𝒩 (𝜇,A) or 𝒩 (𝜇,A−1)
when A is a band matrix.

Parameters

• mu (1-D array_like, of length d) – Mean of the d-dimensional Gaussian distri-
bution.

• A (2-D array_like, of shape (d, d)) – Covariance or precision matrix of the
distribution. It must be symmetric and positive-definite for proper sampling.

• b (int) – Bandwidth of A.

5

https://pygauss-gaussian-sampling.readthedocs.io/en/latest/direct_sampling/index.html
https://docs.python.org/3/library/functions.html#int

PyGauss Documentation, Release 0.1.1

• mode (string, optional) – Indicates if A refers to the precision or covariance matrix
of the Gaussian distribution.

• seed (int, optional) – Random seed to reproduce experimental results.

• size (int, optional) – Given a size of for instance T, T independent and identically
distributed (i.i.d.) samples are returned.

Returns theta – The drawn samples, of shape (d,size), if that was provided. If not, the shape is
(d,1).

Return type ndarray, of shape (d,size)

Raises ValueError – If mode is not included in [‘covariance’,’precision’].

Examples

>>> d = 2
>>> mu = np.zeros(d)
>>> A = np.eye(2)
>>> b = 0
>>> mode = "covariance"
>>> size = 1
>>> theta = sampler_band(mu,A,b,mode=mode,seed=2022,size=size)

pygauss.direct_sampling.sampler_circulant(mu, a, M, N, mode=’precision’, seed=None,
size=1)

Algorithm dedicated to sample from a multivariate real-valued Gaussian distribution 𝒩 (𝜇,A) or 𝒩 (𝜇,A−1)
when A is a block-circulant matrix with circulant blocks.

Parameters

• mu (1-D array_like, of length d) – Mean of the d-dimensional Gaussian distri-
bution.

• a (2-D array_like, of shape (N, M)) – Vector built by stacking the first
columns associated to the 𝑀 blocks of size 𝑁 of the matrix A.

• M (int) – Number of different blocks.

• N (int) – Dimension of each block.

• mode (string, optional) – Indicates if A refers to the precision or covariance matrix
of the Gaussian distribution.

• seed (int, optional) – Random seed to reproduce experimental results.

• size (int, optional) – Given a size of for instance T, T independent and identically
distributed (i.i.d.) samples are returned.

Returns theta – The drawn samples, of shape (d,size), if that was provided. If not, the shape is
(d,1).

Return type ndarray, of shape (d,size)

Raises ValueError – If mode is not included in [‘covariance’,’precision’].

Examples

6 Chapter 2. Documentation contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError

PyGauss Documentation, Release 0.1.1

>>> d = 2
>>> mu = np.zeros(d)
>>> a = np.matrix([1,0]).T
>>> M = 1
>>> N = 2
>>> mode = "covariance"
>>> size = 1
>>> theta = sampler_circulant(mu,a,M,N,mode=mode,seed=2022,size=size)

pygauss.direct_sampling.sampler_factorization(mu, A, mode=’precision’,
method=’Cholesky’, seed=None, size=1)

Algorithm dedicated to sample from a multivariate real-valued Gaussian distribution 𝒩 (𝜇,A) or 𝒩 (𝜇,A−1)
based on matrix factorization (e.g., Cholesky or square root).

Parameters

• mu (1-D array_like, of length d) – Mean of the d-dimensional Gaussian distri-
bution.

• A (2-D array_like, of shape (d, d)) – Covariance or precision matrix of the
distribution. It must be symmetric and positive-definite for proper sampling.

• mode (string, optional) – Indicates if A refers to the precision or covariance matrix
of the Gaussian distribution.

• method (string, optional) – Factorization method. Choose either ‘Cholesky’ or
‘square-root’.

• seed (int, optional) – Random seed to reproduce experimental results.

• size (int, optional) – Given a size of for instance T, T independent and identically
distributed (i.i.d.) samples are returned.

Returns theta – The drawn samples, of shape (d,size), if that was provided. If not, the shape is
(d,1).

Return type ndarray, of shape (d,size)

Raises ValueError – If A is not positive definite and symmetric. If mode is not included in
[‘covariance’,’precision’]. If method is not included in [‘Cholesky’,’square-root’].

Examples

>>> d = 2
>>> mu = np.zeros(d)
>>> A = np.eye(d)
>>> mode = "covariance"
>>> method = "Cholesky"
>>> size = 1
>>> theta = sampler_factorization(mu,A,mode=mode,method=method,seed=2022,
→˓size=size)

pygauss.direct_sampling.sampler_squareRootApprox(mu, A, lam_l, lam_u, tol, K=100,
mode=’precision’, seed=None,
size=1, info=False)

Algorithm dedicated to sample from a multivariate real-valued Gaussian distribution 𝒩 (𝜇,A) or 𝒩 (𝜇,A−1)
based on matrix square root approximation using Chebychev polynomials.

Parameters

2.1. Direct sampling 7

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError

PyGauss Documentation, Release 0.1.1

• mu (1-D array_like, of length d) – Mean of the d-dimensional Gaussian distri-
bution.

• A (function) – Linear operator returning the matrix-vector product Ax where x) ∈ R𝑑.

• lam_l (float) – Lower bound on the eigenvalues of A.

• lam_u (float) – Upper bound on the eigenvalues of A.

• tol (float) – Tolerance threshold used to optimize the polynomial order 𝐾. This thresh-
old stands for the Euclidean distance between the vector computed using order 𝐾 and the
one computed using order 𝐿≤𝐾.

• K (int, optional) – Polynomial order of the approximation.

• mode (string, optional) – Indicates if A refers to the precision or covariance matrix
of the Gaussian distribution.

• seed (int, optional) – Random seed to reproduce experimental results.

• size (int, optional) – Given a size of for instance T, T independent and identically
distributed (i.i.d.) samples are returned.

• info (boolean, optional) – If info is True, returns the order 𝐾 used in the polyno-
mial approximation.

Returns theta – The drawn samples, of shape (d,size), if that was provided. If not, the shape is
(d,1).

Return type ndarray, of shape (d,size)

Raises ValueError – If mode is not included in [‘covariance’,’precision’].

Examples

>>> d = 2
>>> mu = np.zeros(d)
>>> def A(x):

return np.eye(d).dot(x)
>>> lam_l = 0
>>> lam_u = 1
>>> tol = 1e-4
>>> mode = "covariance"
>>> size = 1
>>> theta = sampler_squareRootApprox(mu,A,lam_l=lam_l,lam_u=lam_u,tol=tol,
mode=mode,seed=2022,size=size)

pygauss.direct_sampling.sampler_CG(mu, A, K, init, tol=0.0001, mode=’precision’, seed=None,
size=1, info=False)

Algorithm dedicated to sample from a multivariate real-valued Gaussian distribution 𝒩 (𝜇,A) or 𝒩 (𝜇,A−1)
based on the conjugate gradient algorithm.

Parameters

• mu (1-D array_like, of length d) – Mean of the d-dimensional Gaussian distri-
bution.

• A (function) – Linear operator returning the matrix-vector product Ax where x ∈ R𝑑.

• K (int, optional) – Number of conjugate gradient iterations.

• init (1-D array_like, of length d) – Vector used to initialize the CG sampler.

8 Chapter 2. Documentation contents

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int

PyGauss Documentation, Release 0.1.1

• tol (float, optional) – Tolerance threshold used to stop the conjugate gradient sam-
pler.

• mode (string, optional) – Indicates if A refers to the precision or covariance matrix
of the Gaussian distribution.

• seed (int, optional) – Random seed to reproduce experimental results.

• size (int, optional) – Given a size of for instance T, T independent and identically
distributed (i.i.d.) samples are returned.

• info (boolean, optional) – If info is True, returns the number of iterations 𝐾.

Returns theta – The drawn samples, of shape (d,size), if that was provided. If not, the shape is
(d,1).

Return type ndarray, of shape (d,size)

Raises ValueError – If mode is not included in [‘covariance’,’precision’].

Examples

>>> d = 2
>>> mu = np.zeros(d)
>>> def A(x):

return np.eye(d).dot(x)
>>> K = 2
>>> init = mu
>>> theta = sampler_CG(mu,A,K,init)

class pygauss.direct_sampling.sampler_PO(mu1, mu2, K, init, tol=0.0001, seed=None,
size=1)

Algorithm dedicated to sample from a multivariate real-valued Gaussian distribution 𝒩 (𝜇,Q−1) where Q is a
symmetric and positive definite precision matrix. We assume here that Q = G𝑇

1 Λ
−1
1 G1 + G𝑇

2 Λ
−1
2 G2. The

mean vector is assumed to have the form 𝜇 = G𝑇
1 Λ

−1
1 𝜇1 + G𝑇

2 Λ
−1
2 𝜇2. Sampling from the corresponding

multivariate Gaussian distribution is done with the perturbation-optimization sampler.

__init__(mu1, mu2, K, init, tol=0.0001, seed=None, size=1)

Parameters

• mu1 (1-D array_like, of length d) –

• mu2 (1-D array_like, of length d) –

• K (int, optional) – Number of conjugate gradient iterations to solve the linear sys-
tem Q𝜃 = 𝜂.

• init (1-D array_like, of length d) – Vector used to initialize the CG algo-
rithm.

• tol (float, optional) – Tolerance threshold used to stop the conjugate gradient
algorithm.

• seed (int, optional) – Random seed to reproduce experimental results.

• size (int, optional) – Given a size of for instance T, T independent and identically
distributed (i.i.d.) samples are returned.

circu_diag_band(Lamb1, g, M, N, Q2, b2)
We assume here that G1 is a circulant matrix, Λ1 is diagonal, G2 is the identity matrix and Q2 = Λ−1

2 is
a band matrix.

2.1. Direct sampling 9

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PyGauss Documentation, Release 0.1.1

Parameters

• Lamb1 (1-D array_like, of length d) – Diagonal elements of Λ1.

• g (2-D array_like, of shape (N, M)) – Vector built by stacking the first
columns associated to the 𝑀 blocks of size 𝑁 of the matrix G1.

• M (int) – Number of different blocks in G1.

• N (int) – Dimension of each block in G1.

• Q2 (2-D array_like, of shape (d, d)) – Precision matrix Q2.

• b2 (int) – Bandwidth of Q2.

Returns theta – The drawn samples, of shape (d,size), if that was provided. If not, the shape is
(d,1).

Return type ndarray, of shape (d,size)

Examples

>>> d = 15
>>> mu1 = np.zeros(d)
>>> mu2 = np.zeros(d)
>>> K = 15
>>> init = np.zeros(d)
>>> Lamb1 = np.random.normal(2,0.1,d)
>>> g = np.reshape(np.random.normal(2,0.1,d),(d,1))
>>> M = 1
>>> N = d
>>> Q2 = np.diag(np.random.normal(2,0.1,d))
>>> b2 = 0
>>> size = 10000
>>> S = sampler_PO(mu1,mu2,K,init,size=10000)
>>> theta = S.circu_diag_band(Lamb1,g,M,N,Q21,b2)

2.2 MCMC sampling

2.2.1 Description

This Python module implements existing approaches, based on Markov chain Monte Carlo (MCMC) schemes, to
sample from high-dimensional Gaussian probability distributions. The latter can be divided into two groups, namely:

• matrix splitting approaches,

• data augmentation approaches.

For more details, we refer the interested reader to Section 4 of the companion paper.

2.2.2 API

Implementation of Markov chain Monte Carlo (MCMC) approaches to sample from multivariate Gaussian distribu-
tions.

See also:

10 Chapter 2. Documentation contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PyGauss Documentation, Release 0.1.1

Documentation on ReadTheDocs

class pygauss.mcmc_sampling.sampler_MS(mu, Q, ini, b, band=True, seed=None, size=1)
Algorithm dedicated to sample from a multivariate real-valued Gaussian distribution 𝒩 (𝜇,Q−1) where Q is a
symmetric and positive definite precision matrix. We assume here that the matrix splitting scheme Q = M−N
holds.

__init__(mu, Q, ini, b, band=True, seed=None, size=1)

Parameters

• mu (1-D array_like, of length d) –

• Q (2-D array_like, of shape (d,d)) – Precision matrix.

• ini (1-D array_like, of length d. Initialization of the
Markov chain.) –

• b (int) – Bandwidth of the precision matrix Q.

• band (boolean, optional) – Indicates if the precision matrix is banded with band-
width b.

• seed (int, optional) – Random seed to reproduce experimental results.

• size (int, optional) – Given a size of for instance T, T independent and identically
distributed (i.i.d.) samples are returned.

exact_MS(method=’Gauss-Seidel’)
The samplers considered here are exact.

Parameters method (string, optional) – Matrix splitting approach to choose within
[‘Gauss-Seidel’,’Richardson’,’Jacobi’,’SOR’,’SSOR’,’Cheby-SSOR’].

Returns theta – The drawn samples, of shape (d,size), if that was provided. If not, the shape is
(d,1).

Return type ndarray, of shape (d,size)

Examples

>>> import mcmc_sampling as mcmc
>>> d = 10
>>> mu = np.zeros(d)
>>> ini = np.zeros(d)
>>> Q = np.eye(d)
>>> b = 1
>>> band = True
>>> S = mcmc.sampler_MS(mu,Q,ini=ini,b=b,band=True,seed=2022,size=1)
>>> theta = S.exact_MS(method="Gauss-Seidel")

approx_MS(method=’Clone-MCMC’, omega=1)
The samplers considered here are approximate.

Parameters

• method (string, optional) – Matrix splitting approach to choose within [‘Clone-
MCMC’,’Hogwild’].

• omega (float, optional) – Tuning parameter appearing in some approximate ma-
trix splitting Gibbs samplers.

2.2. MCMC sampling 11

https://pygauss-gaussian-sampling.readthedocs.io/en/latest/mcmc_sampling/index.html
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

PyGauss Documentation, Release 0.1.1

Returns theta – The drawn samples, of shape (d,size), if that was provided. If not, the shape is
(d,1).

Return type ndarray, of shape (d,size)

Examples

>>> import mcmc_sampling as mcmc
>>> d = 10
>>> mu = np.zeros(d)
>>> ini = np.zeros(d)
>>> Q = np.eye(d)
>>> b = 1
>>> band = True
>>> S = mcmc.sampler_MS(mu,Q,ini=ini,b=b,band=True,seed=2022,size=1)
>>> theta = S.approx_MS(method="Gauss-Seidel",omega=1)

class pygauss.mcmc_sampling.sampler_DA(mu, seed=None, size=1)
Algorithm dedicated to sample from a multivariate real-valued Gaussian distribution 𝒩 (𝜇,Q−1) where Q is
a symmetric and positive definite precision matrix. We assume here that Q = G𝑇

1 Λ
−1
1 G1 + G𝑇

2 Λ
−1
2 G2.

Sampling from the corresponding multivariate Gaussian distribution is done with an MCMC algorithm based
on a data augmentation scheme.

__init__(mu, seed=None, size=1)

Parameters

• mu (1-D array_like, of length d) –

• seed (int, optional) – Random seed to reproduce experimental results.

• size (int, optional) – Given a size of for instance T, T independent and identically
distributed (i.i.d.) samples are returned.

exact_DA_circu_diag_band(Lamb1, g, M, N, Q2, b2, method=’GEDA’)
The samplers considered here are exact. We further assume here that G1 is a circulant matrix, Λ1 is
diagonal, G2 is the identity matrix and Q2 = Λ−1

2 is a band matrix.

Parameters

• Lamb1 (1-D array_like, of length d) – Diagonal elements of Λ1.

• g (2-D array_like, of shape (N, M)) – Vector built by stacking the first
columns associated to the 𝑀 blocks of size 𝑁 of the matrix G1.

• M (int) – Number of different blocks in G1.

• N (int) – Dimension of each block in G1.

• Q2 (2-D array_like, of shape (d, d)) – Precision matrix Q2.

• b2 (int) – Bandwidth of Q2.

• method (string, optional) – Data augmentation approach to choose within
[‘EDA’,’GEDA’].

Returns theta – The drawn samples, of shape (d,size), if that was provided. If not, the shape is
(d,1).

Return type ndarray, of shape (d,size)

12 Chapter 2. Documentation contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PyGauss Documentation, Release 0.1.1

Examples

>>> import mcmc_sampling as mcmc
>>> d = 15
>>> Lamb1 = np.random.normal(2,0.1,d)
>>> g = np.reshape(np.random.normal(2,0.1,d),(d,1))
>>> M = 1
>>> N = d
>>> Q2 = np.diag(np.random.normal(2,0.1,d))
>>> b2 = 0
>>> S = mcmc.sampler_DA(mu,seed=2022,size=1)
>>> theta = S.exact_DA_circu_diag_band(Lamb1,g,M,N,

Q2,b2,method="EDA")

exact_DA_circu_diag_circu(Lamb1, LambG1, LambG2, A, method=’GEDA’)
The samplers considered here are exact. We further assume here that G1 is a circulant matrix, Λ1 is
diagonal, Λ2 is the identity matrix and G2 is a circulant matrix.

Parameters

• Lamb1 (1-D array_like, of length d) – Diagonal elements of Λ1.

• LambG1 (1-D array_like, of length d) – Diagonal elements of the Fourier
counterpart matrix associated to the matrix G1.

• LambG2 (1-D array_like, of length d) – Diagonal elements of the Fourier
counterpart matrix associated to the matrix G2.

• A (function) – Linear operator returning the matrix-vector product Qx where x ∈ R𝑑.

• method (string, optional) – Data augmentation approach to choose within
[‘EDA’,’GEDA’].

Returns theta – The drawn samples, of shape (d,size), if that was provided. If not, the shape is
(d,1).

Return type ndarray, of shape (d,size)

Examples

>>> import mcmc_sampling as mcmc
>>> d = 15
>>> Lamb1 = np.random.normal(2,0.1,d)
>>> g = np.reshape(np.random.normal(2,0.1,d),(d,1))
>>> M = 1
>>> N = d
>>> Q2 = np.diag(np.random.normal(2,0.1,d))
>>> b2 = 0
>>> S = mcmc.sampler_DA(mu,seed=2022,size=1)
>>> theta = S.exact_DA_circu_diag_band(Lamb1,g,M,N,

Q2,b2,method="EDA")

2.2. MCMC sampling 13

PyGauss Documentation, Release 0.1.1

14 Chapter 2. Documentation contents

Python Module Index

p
pygauss.direct_sampling, 5
pygauss.mcmc_sampling, 10

15

PyGauss Documentation, Release 0.1.1

16 Python Module Index

Index

Symbols
__init__() (pygauss.direct_sampling.sampler_PO

method), 9
__init__() (pygauss.mcmc_sampling.sampler_DA

method), 12
__init__() (pygauss.mcmc_sampling.sampler_MS

method), 11

A
approx_MS() (pygauss.mcmc_sampling.sampler_MS

method), 11

C
circu_diag_band() (py-

gauss.direct_sampling.sampler_PO method),
9

E
exact_DA_circu_diag_band() (py-

gauss.mcmc_sampling.sampler_DA method),
12

exact_DA_circu_diag_circu() (py-
gauss.mcmc_sampling.sampler_DA method),
13

exact_MS() (pygauss.mcmc_sampling.sampler_MS
method), 11

P
pygauss.direct_sampling (module), 5
pygauss.mcmc_sampling (module), 10

S
sampler_band() (in module py-

gauss.direct_sampling), 5
sampler_CG() (in module pygauss.direct_sampling),

8
sampler_circulant() (in module py-

gauss.direct_sampling), 6
sampler_DA (class in pygauss.mcmc_sampling), 12

sampler_factorization() (in module py-
gauss.direct_sampling), 7

sampler_MS (class in pygauss.mcmc_sampling), 11
sampler_PO (class in pygauss.direct_sampling), 9
sampler_squareRootApprox() (in module py-

gauss.direct_sampling), 7

17

	Installation instructions
	Documentation contents
	Direct sampling
	Description
	API

	MCMC sampling
	Description
	API

	Python Module Index
	Index

